Title: | Data Analysis and Parameter Estimation Using Item Response Theory |
---|---|
Description: | Parameter estimation, computation of probability, information, and (log-)likelihood, and visualization of item/test characteristic curves and item/test information functions for three uni-dimensional item response theory models: the 3-parameter-logistic model, generalized partial credit model, and graded response model. The full documentation and tutorials are at <https://github.com/xluo11/Rirt>. |
Authors: | Xiao Luo [aut, cre] |
Maintainer: | Xiao Luo <[email protected]> |
License: | GPL (>= 3) |
Version: | 0.0.2 |
Built: | 2024-10-14 04:47:26 UTC |
Source: | https://github.com/xluo11/rirt |
Estimate the mixed format model
model_mixed_eap(u, items, D = 1.702, priors = c(0, 1), bounds_t = c(-4, 4)) model_mixed_map(u, items, D = 1.702, priors = c(0, 1), bounds_t = c(-4, 4), iter = 30, conv = 0.001)
model_mixed_eap(u, items, D = 1.702, priors = c(0, 1), bounds_t = c(-4, 4)) model_mixed_map(u, items, D = 1.702, priors = c(0, 1), bounds_t = c(-4, 4), iter = 30, conv = 0.001)
u |
the response data, 2d marix |
items |
a list of 3pl, gpcm, grm items |
D |
the scaling constant |
priors |
the prior distribution |
bounds_t |
the lower- and upper-bound of the parameter |
iter |
the maximum number of newton-raphson iterations |
conv |
the convergence criterion |
model_mixed_eap
returns a list of point estimates and
standard error of the ability parameters
model_mixed_map
returns a list of point estimates of the ability parameters
x <- model_mixed_gendata(200, 30, 5, 5, 3) y <- model_mixed_eap(x$u, x$items) c('corr'=cor(x$t, y$t), 'rmse'=rmse(x$t, y$t)) x <- model_mixed_gendata(200, 30, 5, 5, 3) y <- model_mixed_map(x$u, x$items) c('corr'=cor(x$t, y$t), 'rmse'=rmse(x$t, y$t))
x <- model_mixed_gendata(200, 30, 5, 5, 3) y <- model_mixed_eap(x$u, x$items) c('corr'=cor(x$t, y$t), 'rmse'=rmse(x$t, y$t)) x <- model_mixed_gendata(200, 30, 5, 5, 3) y <- model_mixed_map(x$u, x$items) c('corr'=cor(x$t, y$t), 'rmse'=rmse(x$t, y$t))
Common computations and operations for the 3PL model
model_3pl_prob(t, a, b, c, D = 1.702) model_3pl_info(t, a, b, c, D = 1.702) model_3pl_lh(u, t, a, b, c, D = 1.702, log = FALSE) model_3pl_rescale(t, a, b, c, scale = c("t", "b"), mean = 0, sd = 1) model_3pl_gendata(n_p, n_i, t = NULL, a = NULL, b = NULL, c = NULL, D = 1.702, t_dist = c(0, 1), a_dist = c(-0.1, 0.2), b_dist = c(0, 0.7), c_dist = c(5, 46), t_bounds = c(-3, 3), a_bounds = c(0.01, 2.5), b_bounds = c(-3, 3), c_bounds = c(0, 0.5), missing = NULL, ...) model_3pl_plot(a, b, c, D = 1.702, type = c("prob", "info"), total = FALSE, xaxis = seq(-4, 4, 0.1)) model_3pl_plot_loglh(u, a, b, c, D = 1.702, xaxis = seq(-4, 4, 0.1), verbose = FALSE)
model_3pl_prob(t, a, b, c, D = 1.702) model_3pl_info(t, a, b, c, D = 1.702) model_3pl_lh(u, t, a, b, c, D = 1.702, log = FALSE) model_3pl_rescale(t, a, b, c, scale = c("t", "b"), mean = 0, sd = 1) model_3pl_gendata(n_p, n_i, t = NULL, a = NULL, b = NULL, c = NULL, D = 1.702, t_dist = c(0, 1), a_dist = c(-0.1, 0.2), b_dist = c(0, 0.7), c_dist = c(5, 46), t_bounds = c(-3, 3), a_bounds = c(0.01, 2.5), b_bounds = c(-3, 3), c_bounds = c(0, 0.5), missing = NULL, ...) model_3pl_plot(a, b, c, D = 1.702, type = c("prob", "info"), total = FALSE, xaxis = seq(-4, 4, 0.1)) model_3pl_plot_loglh(u, a, b, c, D = 1.702, xaxis = seq(-4, 4, 0.1), verbose = FALSE)
t |
ability parameters, 1d vector |
a |
discrimination parameters, 1d vector |
b |
difficulty parameters, 1d vector |
c |
guessing parameters, 1d vector |
D |
the scaling constant, default=1.702 |
u |
observed responses, 2d matrix |
log |
True to return log-likelihood |
scale |
the scale, 't' for theta or 'b' for b-parameters |
mean |
the mean of the new scale |
sd |
the standard deviation of the new scale |
n_p |
the number of people to be generated |
n_i |
the number of items to be generated |
t_dist |
parameters of the normal distribution used to generate t-parameters |
a_dist |
parameters of the lognormal distribution used to generate a-parameters |
b_dist |
parameters of the normal distribution used to generate b-parameters |
c_dist |
parameters of the beta distribution used to generate c-parameters |
t_bounds |
bounds of the ability parameters |
a_bounds |
bounds of the discrimination parameters |
b_bounds |
bounds of the difficulty parameters |
c_bounds |
bounds of the guessing parameters |
missing |
the proportion or number of missing responses |
... |
additional arguments |
type |
the type of plot: 'prob' for item characteristic curve (ICC) and 'info' for item information function curve (IIFC) |
total |
TRUE to sum values over items |
xaxis |
the values of x-axis |
verbose |
TRUE to print rough maximum likelihood estimates |
model_3pl_prob
returns the resulting probabilities in a matrix
model_3pl_info
returns the resulting information in a matrix
model_3pl_lh
returns the resulting likelihood in a matrix
model_3pl_rescale
returns t, a, b, c parameters on the new scale
model_3pl_gendata
returns the generated response matrix and parameters in a list
model_3pl_plot
returns a ggplot
object
model_3pl_plot_loglh
returns a ggplot
object
with(model_3pl_gendata(10, 5), model_3pl_prob(t, a, b, c)) with(model_3pl_gendata(10, 5), model_3pl_info(t, a, b, c)) with(model_3pl_gendata(10, 5), model_3pl_lh(u, t, a, b, c)) model_3pl_gendata(10, 5) model_3pl_gendata(10, 5, a=1, c=0, missing=.1) with(model_3pl_gendata(10, 5), model_3pl_plot(a, b, c, type="prob")) with(model_3pl_gendata(10, 5), model_3pl_plot(a, b, c, type="info", total=TRUE)) with(model_3pl_gendata(5, 50), model_3pl_plot_loglh(u, a, b, c))
with(model_3pl_gendata(10, 5), model_3pl_prob(t, a, b, c)) with(model_3pl_gendata(10, 5), model_3pl_info(t, a, b, c)) with(model_3pl_gendata(10, 5), model_3pl_lh(u, t, a, b, c)) model_3pl_gendata(10, 5) model_3pl_gendata(10, 5, a=1, c=0, missing=.1) with(model_3pl_gendata(10, 5), model_3pl_plot(a, b, c, type="prob")) with(model_3pl_gendata(10, 5), model_3pl_plot(a, b, c, type="info", total=TRUE)) with(model_3pl_gendata(5, 50), model_3pl_plot_loglh(u, a, b, c))
Common computations and operatoins for the GPCM
model_gpcm_prob(t, a, b, d, D = 1.702, d0 = NULL) model_gpcm_info(t, a, b, d, D = 1.702, d0 = NULL) model_gpcm_lh(u, t, a, b, d, D = 1.702, d0 = NULL, log = FALSE) model_gpcm_gendata(n_p, n_i, n_c, t = NULL, a = NULL, b = NULL, d = NULL, D = 1.702, sort_d = FALSE, t_dist = c(0, 1), a_dist = c(-0.1, 0.2), b_dist = c(0, 0.8), d_dist = c(0, 1), t_bounds = c(-3, 3), a_bounds = c(0.01, 2.5), b_bounds = c(-3, 3), d_bounds = c(-3, 3), missing = NULL, ...) model_gpcm_rescale(t, a, b, d, scale = c("t", "b"), mean = 0, sd = 1) model_gpcm_plot(a, b, d, D = 1.702, d0 = NULL, type = c("prob", "info"), item_level = FALSE, total = FALSE, xaxis = seq(-6, 6, 0.1)) model_gpcm_plot_loglh(u, a, b, d, D = 1.702, d0 = NULL, xaxis = seq(-6, 6, 0.1), verbose = FALSE)
model_gpcm_prob(t, a, b, d, D = 1.702, d0 = NULL) model_gpcm_info(t, a, b, d, D = 1.702, d0 = NULL) model_gpcm_lh(u, t, a, b, d, D = 1.702, d0 = NULL, log = FALSE) model_gpcm_gendata(n_p, n_i, n_c, t = NULL, a = NULL, b = NULL, d = NULL, D = 1.702, sort_d = FALSE, t_dist = c(0, 1), a_dist = c(-0.1, 0.2), b_dist = c(0, 0.8), d_dist = c(0, 1), t_bounds = c(-3, 3), a_bounds = c(0.01, 2.5), b_bounds = c(-3, 3), d_bounds = c(-3, 3), missing = NULL, ...) model_gpcm_rescale(t, a, b, d, scale = c("t", "b"), mean = 0, sd = 1) model_gpcm_plot(a, b, d, D = 1.702, d0 = NULL, type = c("prob", "info"), item_level = FALSE, total = FALSE, xaxis = seq(-6, 6, 0.1)) model_gpcm_plot_loglh(u, a, b, d, D = 1.702, d0 = NULL, xaxis = seq(-6, 6, 0.1), verbose = FALSE)
t |
ability parameters, 1d vector |
a |
discrimination parameters, 1d vector |
b |
item location parameters, 1d vector |
d |
item category parameters, 2d vector |
D |
the scaling constant, default=1.702 |
d0 |
insert an initial category value |
u |
observed scores (starting from 0), 2d matrix |
log |
TRUE to return log-likelihood |
n_p |
the number of people to be generated |
n_i |
the number of items to be generated |
n_c |
the number of score categories |
sort_d |
|
t_dist |
parameters of the normal distribution used to generate t-parameters |
a_dist |
parameters of the lognormal distribution parameters of a-parameters |
b_dist |
parameters of the normal distribution used to generate b-parameters |
d_dist |
parameters of the normal distribution used to generate d-parameters |
t_bounds |
the bounds of the ability parameters |
a_bounds |
the bounds of the discrimination parameters |
b_bounds |
the bounds of the difficulty parameters |
d_bounds |
the bounds of the category parameters |
missing |
the proportion or number of missing responses |
... |
additional arguments |
scale |
the scale, 't' for theta or 'b' for b-parameters |
mean |
the mean of the new scale |
sd |
the standard deviation of the new scale |
type |
the type of plot, prob for ICC and info for IIFC |
item_level |
TRUE to add item level data |
total |
TRUE to sum values over items |
xaxis |
the values of x-axis |
verbose |
TRUE to print rough maximum likelihood values |
Use NA
to represent unused category.
model_gpcm_prob
returns the resulting probabilities in a 3d array
model_gpcm_info
returns the resulting information in a 3d array
model_gpcm_lh
returns the resulting likelihood in a matrix
model_gpcm_gendata
returns the generated response matrix and parameters
model_gpcm_rescale
returns t, a, b, d parameters on the new scale
model_gpcm_plot
returns a ggplot
object
model_gpcm_plot_loglh
returns a ggplot
object
with(model_gpcm_gendata(10, 5, 3), model_gpcm_prob(t, a, b, d)) with(model_gpcm_gendata(10, 5, 3), model_gpcm_info(t, a, b, d)) with(model_gpcm_gendata(10, 5, 3), model_gpcm_lh(u, t, a, b, d)) model_gpcm_gendata(10, 5, 3) model_gpcm_gendata(10, 5, 3, missing=.1) # Figure 1 in Muraki, 1992 (APM) b <- matrix(c(-2,0,2,-.5,0,2,-.5,0,2), nrow=3, byrow=TRUE) model_gpcm_plot(a=c(1,1,.7), b=rowMeans(b), d=rowMeans(b)-b, D=1.0, d0=0) # Figure 2 in Muraki, 1992 (APM) b <- matrix(c(.5,0,NA,0,0,0), nrow=2, byrow=TRUE) model_gpcm_plot(a=.7, b=rowMeans(b, na.rm=TRUE), d=rowMeans(b, na.rm=TRUE)-b, D=1.0, d0=0) # Figure 3 in Muraki, 1992 (APM) b <- matrix(c(1.759,-1.643,3.970,-2.764), nrow=2, byrow=TRUE) model_gpcm_plot(a=c(.778,.946), b=rowMeans(b), d=rowMeans(b)-b, D=1.0, d0=0) # Figure 1 in Muraki, 1993 (APM) b <- matrix(c(0,-2,4,0,-2,2,0,-2,0,0,-2,-2,0,-2,-4), nrow=5, byrow=TRUE) model_gpcm_plot(a=1, b=rowMeans(b), d=rowMeans(b)-b, D=1.0) # Figure 2 in Muraki, 1993 (APM) b <- matrix(c(0,-2,4,0,-2,2,0,-2,0,0,-2,-2,0,-2,-4), nrow=5, byrow=TRUE) model_gpcm_plot(a=1, b=rowMeans(b), d=rowMeans(b)-b, D=1.0, type='info', item_level=TRUE) with(model_gpcm_gendata(5, 50, 3), model_gpcm_plot_loglh(u, a, b, d))
with(model_gpcm_gendata(10, 5, 3), model_gpcm_prob(t, a, b, d)) with(model_gpcm_gendata(10, 5, 3), model_gpcm_info(t, a, b, d)) with(model_gpcm_gendata(10, 5, 3), model_gpcm_lh(u, t, a, b, d)) model_gpcm_gendata(10, 5, 3) model_gpcm_gendata(10, 5, 3, missing=.1) # Figure 1 in Muraki, 1992 (APM) b <- matrix(c(-2,0,2,-.5,0,2,-.5,0,2), nrow=3, byrow=TRUE) model_gpcm_plot(a=c(1,1,.7), b=rowMeans(b), d=rowMeans(b)-b, D=1.0, d0=0) # Figure 2 in Muraki, 1992 (APM) b <- matrix(c(.5,0,NA,0,0,0), nrow=2, byrow=TRUE) model_gpcm_plot(a=.7, b=rowMeans(b, na.rm=TRUE), d=rowMeans(b, na.rm=TRUE)-b, D=1.0, d0=0) # Figure 3 in Muraki, 1992 (APM) b <- matrix(c(1.759,-1.643,3.970,-2.764), nrow=2, byrow=TRUE) model_gpcm_plot(a=c(.778,.946), b=rowMeans(b), d=rowMeans(b)-b, D=1.0, d0=0) # Figure 1 in Muraki, 1993 (APM) b <- matrix(c(0,-2,4,0,-2,2,0,-2,0,0,-2,-2,0,-2,-4), nrow=5, byrow=TRUE) model_gpcm_plot(a=1, b=rowMeans(b), d=rowMeans(b)-b, D=1.0) # Figure 2 in Muraki, 1993 (APM) b <- matrix(c(0,-2,4,0,-2,2,0,-2,0,0,-2,-2,0,-2,-4), nrow=5, byrow=TRUE) model_gpcm_plot(a=1, b=rowMeans(b), d=rowMeans(b)-b, D=1.0, type='info', item_level=TRUE) with(model_gpcm_gendata(5, 50, 3), model_gpcm_plot_loglh(u, a, b, d))
Common computations and operations for the GRM
model_grm_prob(t, a, b, D = 1.702, raw = FALSE) model_grm_info(t, a, b, D = 1.702) model_grm_lh(u, t, a, b, D = 1.702, log = FALSE) model_grm_gendata(n_p, n_i, n_c, t = NULL, a = NULL, b = NULL, D = 1.702, t_dist = c(0, 1), a_dist = c(-0.1, 0.2), b_dist = c(0, 0.8), t_bounds = c(-3, 3), a_bounds = c(0.01, 2.5), b_bounds = c(-3, 3), missing = NULL, ...) model_grm_rescale(t, a, b, scale = c("t", "b"), mean = 0, sd = 1) model_grm_plot(a, b, D = 1.702, type = c("prob", "info"), item_level = FALSE, total = FALSE, xaxis = seq(-6, 6, 0.1), raw = FALSE) model_grm_plot_loglh(u, a, b, D = 1.702, xaxis = seq(-6, 6, 0.1), verbose = FALSE)
model_grm_prob(t, a, b, D = 1.702, raw = FALSE) model_grm_info(t, a, b, D = 1.702) model_grm_lh(u, t, a, b, D = 1.702, log = FALSE) model_grm_gendata(n_p, n_i, n_c, t = NULL, a = NULL, b = NULL, D = 1.702, t_dist = c(0, 1), a_dist = c(-0.1, 0.2), b_dist = c(0, 0.8), t_bounds = c(-3, 3), a_bounds = c(0.01, 2.5), b_bounds = c(-3, 3), missing = NULL, ...) model_grm_rescale(t, a, b, scale = c("t", "b"), mean = 0, sd = 1) model_grm_plot(a, b, D = 1.702, type = c("prob", "info"), item_level = FALSE, total = FALSE, xaxis = seq(-6, 6, 0.1), raw = FALSE) model_grm_plot_loglh(u, a, b, D = 1.702, xaxis = seq(-6, 6, 0.1), verbose = FALSE)
t |
ability parameters, 1d vector |
a |
discrimination parameters, 1d vector |
b |
item location parameters, 2d matrix |
D |
the scaling constant, default=1.702 |
raw |
TRUE to return P* |
u |
observed scores (starting from 0), 2d matrix |
log |
TRUE to return log-likelihood |
n_p |
the number of people to be generated |
n_i |
the number of items to be generated |
n_c |
the number of score categories |
t_dist |
parameters of the normal distribution used to generate t-parameters |
a_dist |
parameters of the lognormal distribution used to generate a-parameters |
b_dist |
parameters of the normal distribution used to generate b-parameters |
t_bounds |
the bounds of the ability parameters |
a_bounds |
the bounds of the discrimination parameters |
b_bounds |
the bounds of the difficulty parameters |
missing |
the proportion or number of missing responses |
... |
additional arguments |
scale |
the scale, 't' for theta or 'b' for b-parameters |
mean |
the mean of the new scale |
sd |
the standard deviation of the new scale |
type |
the type of plot, prob for ICC and info for IIFC |
item_level |
TRUE to combine categories |
total |
TRUE to sum values over items |
xaxis |
the values of x-axis |
verbose |
TRUE to print rough maximum likelihood values |
model_grm_prob
returns the resulting probabilities in a 3d array
model_grm_info
returns the resulting information in a 3d array
model_grm_lh
returns the resulting likelihood in a matrix
model_grm_gendata
returns the generated response data and parameters in a list
model_grm_rescale
returns t, a, b parameters on the new scale
model_grm_plot
returns a ggplot
object
model_grm_plot_loglh
returns a ggplot
object
with(model_grm_gendata(10, 5, 3), model_grm_prob(t, a, b)) with(model_grm_gendata(10, 5, 3), model_grm_info(t, a, b)) with(model_grm_gendata(10, 5, 3), model_grm_lh(u, t, a, b)) model_grm_gendata(10, 5, 3) model_grm_gendata(10, 5, 3, missing=.1) with(model_grm_gendata(10, 5, 3), model_grm_plot(a, b, type='prob')) with(model_grm_gendata(10, 5, 3), model_grm_plot(a, b, type='info', item_level=TRUE)) with(model_grm_gendata(5, 50, 3), model_grm_plot_loglh(u, a, b))
with(model_grm_gendata(10, 5, 3), model_grm_prob(t, a, b)) with(model_grm_gendata(10, 5, 3), model_grm_info(t, a, b)) with(model_grm_gendata(10, 5, 3), model_grm_lh(u, t, a, b)) model_grm_gendata(10, 5, 3) model_grm_gendata(10, 5, 3, missing=.1) with(model_grm_gendata(10, 5, 3), model_grm_plot(a, b, type='prob')) with(model_grm_gendata(10, 5, 3), model_grm_plot(a, b, type='info', item_level=TRUE)) with(model_grm_gendata(5, 50, 3), model_grm_plot_loglh(u, a, b))
Common computations and operations for the mixed format model
model_mixed_gendata(n_p, n_3pl = 0, n_gpcm = 0, n_grm = 0, n_c, ...) model_mixed_prob(t, items, D = 1.702) model_mixed_info(t, items, D = 1.702, combine = TRUE) model_mixed_lh(u, t, items, D = 1.702, log = FALSE, combine = TRUE)
model_mixed_gendata(n_p, n_3pl = 0, n_gpcm = 0, n_grm = 0, n_c, ...) model_mixed_prob(t, items, D = 1.702) model_mixed_info(t, items, D = 1.702, combine = TRUE) model_mixed_lh(u, t, items, D = 1.702, log = FALSE, combine = TRUE)
n_p |
the number of test takers |
n_3pl |
the number of 3pl items |
n_gpcm |
the number of gpcm items |
n_grm |
the number of grm items |
n_c |
the number of score categories for polytomous items |
... |
additional arguments |
t |
ability parameters, a vector |
items |
a list of '3pl', 'gpcm', and 'grm' items |
D |
the scaling constant, default=1.702 |
combine |
|
u |
the response data, a 2d matrix |
log |
|
model_mixed_gendata
returns a list of generated responses, ability paramters and items
model_mixed_prob
returns a list of probabilities for '3pl', 'gpcm', and 'grm' items
model_mixed_info
returns a list or matrix of information
# generate 10 3pl items, 5 gpcm items and 5 grm items model_mixed_gendata(10, n_3pl=10, n_gpcm=5, n_grm=5, n_c=3) # generate 5 gpcm items and 5 grm items, 4 score categories each model_mixed_gendata(10, n_gpcm=5, n_grm=5, n_c=4) # generate 5 people and 4 items of each type with(model_mixed_gendata(n_p=5, n_3pl=4, n_gpcm=4, n_grm=4, n_c=3), model_mixed_prob(t, items)) # generate 10 people and 5 gpcm and 5 grm items with(model_mixed_gendata(n_p=10, n_gpcm=4, n_grm=4, n_c=3), model_mixed_prob(t, items)) with(model_mixed_gendata(10, 4, 4, 4, 3), model_mixed_info(t, items)) with(model_mixed_gendata(10, 0, 4, 4, 3), model_mixed_info(t, items)) with(model_mixed_gendata(10, 4, 4, 4, 3), model_mixed_lh(u, t, items))
# generate 10 3pl items, 5 gpcm items and 5 grm items model_mixed_gendata(10, n_3pl=10, n_gpcm=5, n_grm=5, n_c=3) # generate 5 gpcm items and 5 grm items, 4 score categories each model_mixed_gendata(10, n_gpcm=5, n_grm=5, n_c=4) # generate 5 people and 4 items of each type with(model_mixed_gendata(n_p=5, n_3pl=4, n_gpcm=4, n_grm=4, n_c=3), model_mixed_prob(t, items)) # generate 10 people and 5 gpcm and 5 grm items with(model_mixed_gendata(n_p=10, n_gpcm=4, n_grm=4, n_c=3), model_mixed_prob(t, items)) with(model_mixed_gendata(10, 4, 4, 4, 3), model_mixed_info(t, items)) with(model_mixed_gendata(10, 0, 4, 4, 3), model_mixed_info(t, items)) with(model_mixed_gendata(10, 4, 4, 4, 3), model_mixed_lh(u, t, items))
rmse
computes the root mean squared error (RMSE)
of two numeric vectors/matrices
freq
computes the frequency counts of
a numeric or character vector
cronbach_alpha
computes the Cronbach's alpha
internal consistency reliability index
spearman_brown
predicts the reliability when the
current test is extended to n times longer
spearman_brown_reverse
computes how many times
the current test length needs to be extended in order to reach targeted
reliability
quadratic kappa
computes the quadratic weighted kappa
of two numeric vectors
rmse(x1, x2) freq(x, vals = NULL, decimal = NULL) cronbach_alpha(u) spearman_brown(rho, n_len) spearman_brown_reverse(rho, target_rho) quadratic_kappa(x1, x2)
rmse(x1, x2) freq(x, vals = NULL, decimal = NULL) cronbach_alpha(u) spearman_brown(rho, n_len) spearman_brown_reverse(rho, target_rho) quadratic_kappa(x1, x2)
x1 |
a numeric vector or matrix |
x2 |
a numeric vector or matrix |
x |
a numeric or character vector |
vals |
valid values, |
decimal |
round results to n-th decimal places |
u |
oberved responses, 2d matrix |
rho |
the reliability of the current test |
n_len |
extend the test to n times longer |
target_rho |
the targeted reliability |
freq
returns the frequency counts and percentages in a data.frame
rmse(rnorm(10), rnorm(10)) freq(round(runif(100, 1, 5))) cronbach_alpha(model_3pl_gendata(1000, 20)$u) spearman_brown(.70, 2) spearman_brown_reverse(.70, .85) quadratic_kappa(round(runif(100, 1, 5)), round(runif(100, 1, 5)))
rmse(rnorm(10), rnorm(10)) freq(round(runif(100, 1, 5))) cronbach_alpha(model_3pl_gendata(1000, 20)$u) spearman_brown(.70, 2) spearman_brown_reverse(.70, .85) quadratic_kappa(round(runif(100, 1, 5)), round(runif(100, 1, 5)))